
Int. J. Ad Hoc and Ubiquitous Computing, Vol. 1, No. 4, 2006 239

Copyright © 2006 Inderscience Enterprises Ltd.

Elapsed time on arrival: a simple and versatile
primitive for canonical time synchronisation
services

Branislav Kusý
Institute for Software Integrated Systems,
Vanderbilt University,
Nashville, Tennessee 37203, USA
E-mail: branislav.kusy@vanderbilt.edu

Prabal Dutta and Philip Levis
Computer Science Division,
University of California,
Berkeley, California 94720, USA
E-mail: prabal@cs.berkeley.edu E-mail: pal@cs.stanford.edu

Miklόs Marόti and Ákos Lédeczi*
Institute for Software Integrated Systems,
Vanderbilt University,
Nashville, Tennessee 37203, USA
E-mail: miklos.maroti@vanderbilt.edu E-mail: akos.ledeczi@vanderbilt.edu
*Corresponding author

David Culler
Computer Science Division,
University of California,
Berkeley, California 94720, USA
E-mail: culler@cs.berkeley.edu

Abstract: Time synchronisation is one of the most important and fundamental middleware
services for wireless sensor networks. However, there is an apparent disconnect between existing
time synchronisation implementations and the actual needs of current typical sensor network
applications. To address this problem, we formulate a set of canonical time synchronisation
services distilled from actual applications and propose a set of general application programming
interfaces for providing them. We argue that these services can be implemented using a simple
time-stamping primitive called Elapsed Time on Arrival (ETA) and we provide two such
implementations. The Routing Integrated Time Synchronisation (RITS) is an extension of ETA
over multiple hops. It is a reactive time synchronisation protocol that can be used to correlate
multiple event detections at one or more locations to within microseconds. Rapid Time
Synchronisation (RATS) is a proactive timesync protocol that utilises RITS to achieve
network-wide synchronisation with microsecond precision and rapid convergence. Our work
demonstrates that it is possible to build high-performance timesync services using the simple
ETA primitive and suggests that more complex mechanisms may be unnecessary to meet the
needs of many real world sensor network applications.

Keywords: sensor networks; ad hoc networks; ubiquitous computing; time synchronisation;
clock synchronisation; clock drift; multi-hop; medium access control; packet delay.

Reference to this paper should be made as follows: Kusý, B., Dutta, P., Levis, P., Marόti, M.,
Lédeczi, A. and Culler, D. (2006) ‘Elapsed time on arrival: a simple and versatile primitive for
canonical time synchronisation services’, Int. J. Ad Hoc and Ubiquitous Computing, Vol. 1,
No. 4, pp.239–251.

Biographical notes: Branislav Kusý is a Research Assistant at the Institute for Software
Integrated Systems, Vanderbilt University. His current research interests include time
synchronisation, radio based ranging and localisation of sensornets. He is pursuing his PhD in the
Electrical Engineering and Computer Science Department at Vanderbilt University, Nashville.

240 B. Kusý et al.

Prabal Dutta is a doctoral student in the Computer Science Division of the Electrical Engineering
and Computer Sciences Department at the University of California, Berkeley, where he is a
NSF Fellow. His advisor is David Culler. His interests include sensor network design at the
hardware-software interface.

Philip Levis was a doctoral student in the Computer Science Division of the Electrical
Engineering and Computer Sciences Department at the University of California, Berkeley, at the
time of this work and his advisor was David Culler. He is currently an Assistant Professor of
Computer Science at Stanford University. His research interests are sensor network systems,
protocols and programming. He implemented TOSSIM, the de facto simulator of the sensor
network community and helped design nesC, the TinyOS programming language.

Miklós Maróti was a Research Assistant Professor at the Institute of Software Integrated
Systems, Vanderbilt University at the time of this work. Currently, he is Assistant Professor at
University of Szeged, Hungary. His research interest includes formal specification and analysis
of embedded systems, and active libraries of middleware components. He received a PhD in
Mathematics from Vanderbilt University.

Ákos Lédeczi is a Senior Research Scientist at the Institute for Software Integrated Systems,
Vanderbilt University. His current research interests include model-based synthesis and
simulation of embedded systems. He received his PhD in electrical engineering from Vanderbilt
University.

David Culler is a Professor of Computer Science at University of California, Berkeley,
a former Director of Intel Research Berkeley, and a member of the National Academy of
Engineering. He leads the TinyOS project.

1 Introduction

Time synchronisation has been extensively studied in the
context of distributed systems theory, internetworks, local
area networks, real-time control systems, wireless sensor
networks (WSNs), and many applications. These different
contexts have led to different notions of time. A common
notion of time allows us to reason about the ordering of
events, the causal relationships and correlations between
events, the rate of change of observations over time, and
also enables the coordination of future actions. Events in
distributed systems can be specified in the temporal, causal,
logical, and delivery order, as well as expressed in local and
global time frames (Kopetz, 1997; Lamport, 1978;
Reichenbach, 1957).

In the context of WSNs, timesync commonly refers to
the problem of synchronising clocks across a set of sensor
nodes which are connected to one another over single- or
multi-hop wireless communications channel. Many existing
sensor network applications require temporal ordering of
events either relative to other events or relative to an
absolute external frame of reference. A variety of time
synchronisation algorithms have been proposed to address
both the temporal ordering of events and the more general
problem of establishing a virtual global timebase across a
network. Often, these timesync algorithms require nodes to
involve third parties (such as reference broadcasters),
perform two-way handshakes, exchange multiple messages,
or perform computationally expensive optimisations, for
example, to maintain synchronised clocks and a consistent
sense of network time. Section 2 surveys the related work
on time synchronisation in sensors networks, describes how
they correlate with the canonical services and what sources
of errors they eliminate.

Since all of these operations consume extra system
resources, but not all applications have identical
synchronisation needs, we may find that system resources
are being wasted unnecessarily. This suggests that these
more complex and intricate mechanisms may be
inappropriate to meet the needs of many common sensor
network applications. We suggest that a better match
between applications and timesync implementations is
possible, but it requires a better understanding of the ways
in which applications use timesync services. Section 3
explores the time synchronisation requirements of common
sensor applications and distils a set of canonical timesync
services from several application domains into a set of
timesync application programming interfaces.

Section 4 analyses the sources of time-stamping jitter
and physical clock variation. We suggest several
mechanisms that exploit the rich interfaces between the
software and hardware layers to minimise the
non-determinism. Our implementation of these mechanisms
is a time-stamping primitive called elapsed time on arrival
(ETA), which is a medium access control layer plug-in that
reduces or eliminates nearly all sources of time-stamping
jitter.

Timesync services can utilise ETA as a low-level
primitive provided by the operating system that abstracts
underlying hardware and drivers. Porting a timesync service
to a different hardware platform requires simply porting the
ETA primitive to that platform, promoting loose-coupling
and reuse of timesync code. To demonstrate the versatility
of ETA, we implemented two general timesync services.
Routing integrated time synchronisation (RITS) is a reactive
time synchronisation protocol that can be used to correlate
multiple event detections at one or more locations to within

 Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services 241

microseconds. Rapid Time Synchronisation (RATS) is a
proactive timesync protocol that achieves network-wide
synchronisation with microsecond precision and rapid
convergence. The design details of ETA, RITS, and
RATS are presented in Section 5 and a performance
evaluation is presented in Section 6. Section 7 presents the
conclusions.

Conceptually similar time-stamping primitives have
been proposed in the literature but no earlier implementation
has achieved comparable performance. As a consequence,
other implementations have resorted to more complex
designs to mitigate the effects of timing jitter. Our work
suggests that these more complex timesync mechanisms
may be unnecessary to meet the needs of many common
sensor network applications.

2 Related work

WSNs present a unique set of challenges not found in
traditional networks such as unreliable, and possibly,
unidirectional links, dense and dynamically changing
topology and extremely limited energy, computational
power and memory resources. Consequently, many results
in the rich literature on time synchronisation were not
directly applicable in WSNs, and a number of new
algorithms and protocols have been proposed.

Sivrikaya and Yener (2004) present a survey of sensor
network time synchronisation protocols. Their paper
outlines the synchronisation problems using computer
clocks as the timebase, identifies common challenges for
synchronisation methods, and enumerates the requirements
of synchronisation schemes for sensor networks. One of
these requirements, called immediacy, quantifies the
allowable latency when reporting an event to a sink node.
The paper claims that immediacy requirements might
prevent the use of certain protocols which, the paper
claims, in turn, require that nodes be presynchronised at all
times. We show this claim to be inaccurate; that
presynchronisation is not necessary; and that our post-facto
approach can convey the event time just as rapidly.

A more in-depth analysis of the timesync problem is
presented by Romer et al. (2005) which extends
significantly the analysis of essential issues surrounding
timesync for sensor networks presented by Elson and
Romer (2002). This book chapter describes a system
model, identifies classes of synchronisation, presents
synchronisation techniques, reviews and classifies ten
concrete timesync algorithms from the literature, proposes
evaluation strategies, and casts time synchronisation as a
special case of the calibration problem. Of particular interest
to us are the descriptions, classifications, and evaluations of
the ten timesync protocols: Time-stamp Synchronisation
(TSS) (Romer, 2001), Reference Broadcast Synchronisation
(RBS) (Elson, 2002), Tiny-Sync and Mini-Sync (TS/MS)
(Sichitiu and Veerarittiphan, 2003), Lightweight Time
Synchronisation (LTS) (van Greunen and Rabaey, 2003),
Timing-Sync Protocol for Sensor Networks (TPSN)
(Ganeriwal et al., 2003), TSync (Dai and Han, 1994),

Interval-Based Synchronisation (IBS) (Marzullo and
Owicki, 1983; Blum et al., 2004; Meier et al., 2004; Schmid
and Schossmaier, 1997), Flooding Time Synchronisation
Protocol (FTSP) (Maróti et al., 2004), Asynchronous
Diffusion (AD) (Li and Rus, 2004), and Time Diffusion
Synchronisation (TDP) (Su and Akyildiz, 2004). Most
relevant to our work are TSS, RBS, TPSN, FTSP, and the
timesync protocol used in a structural monitoring
application by Xu et al. (2004).

The Time-Stamp Synchronisation (TSS) approach is
conceptually similar to our time-stamping primitive. One
drawback to the TSS approach is the requirement for
multiple floating-point operations at each node which, on
mote-class devices, is expensive. Another, more significant
drawback stems from the assumption that it is difficult to
accurately estimate message delays between neighbouring
nodes. This assumption is due to the queuing, randomness,
and contention that typically occur in the media access
control layer of many networks on desktop-class computers.
However, with the advent of specially-designed operating
systems such as TinyOS (Hill, 2000) and integrated sensor
nodes like the Mica motes, event callbacks that are invoked
at the actual time of message transmission are possible.

The Reference Broadcast System (RBS), perhaps the
best known timesync algorithm in the sensor network
regime, uses a transmitter node to synchronise the clocks of
two receiver nodes to each other. The RBS approach
time-stamps messages only on the receiver side, which
eliminates the delays on the sender side, most notably in the
medium access control layer. The accuracy of the RBS
time-stamping reported by the authors is approximately
11 µs on the Mica platform. Least square linear regression is
used to account for the clock drifts which results in 7.4 µs
average error between two motes after a 60 second interval.
The RBS solution for the multi-hop scenario uses concepts
similar to one of our proposed canonical services. However,
because of the extra coordination overhead of reference
broadcasters, the implementation is considerably more
complicated and less energy efficient than our proposed
solution in Section 5.2.

The Timing-Sync Protocol for Sensor Networks (TPSN)
eliminates sources of time-stamping errors by making use of
the implicit acknowledgments to transmit information back
to the sender. This protocol gains additional accuracy over
RBS due to time-stamping of the radio message twice
and averaging these time-stamps. Since TPSN relies on a
two-way information exchange, messages cannot be
broadcasted, which results in higher communication load.
The authors of TPSN algorithm implemented both TPSN
and RBS on the Mica platform using a 4 MHz clock for
time-stamping, and compared the precision of the two
algorithms. The resulting average errors for a single hop
case for two nodes are 16.9 µs and 29.1 µs for the TPSN and
RBS algorithms, respectively.

The Flooding Time Synchronisation Protocol (FTSP)
improves on the ideas in RBS and TPSN. It is a proactive
protocol in which every node periodically broadcasts
timesync messages. The local clock of a single dynamically

242 B. Kusý et al.

elected node provides the global time in the network. A time
synchronisation hierarchy rooted at this node is created in
which nodes are synchronised by receiving global time
estimates from nodes closer to the root. The applied
flood-based communication protocol in FTSP provides a
very robust network, and still incurs only small network
traffic. The algorithm uses a fine-grained clock, MAC-layer
time-stamping with several jitter reducing techniques and
clock drift estimation to achieve high precision. On the
Mica2 platform the reported average error of the algorithm
is 1.48 µs for the single hop case, and 0.5 µs per hop in a
6-hop network for the multi-hop case. However, the initial
convergence time of FTSP on a 60-node 6-hop network is
10 minutes.

The FTSP time-stamping reduces non-determinism to
such a degree that RBS’s receiver-receiver and TPSN’s
two-way sender-receiver synchronisation become
unnecessary, and one-way sender-receiver synchronisation
suffices. FTSP accomplishes this by identifying, estimating,
and compensating for almost all sources of uncertainties in
the radio message delivery. We fully leverage and extend
FTSP’s results to build our time-stamping primitive
presented in detail in Section 5.

Hardware accelerators represent the most promising
approach to reducing jitter uncertainty to the level of the
system clock granularity. Hill and Culler (2002) observed
that unlike wide-area time synchronisation protocols such as
NTP, in sensor networks we may be able to determine all
sources of communication delay. By exposing all sources of
delay to the application, they were able to synchronise a pair
of nodes to within 2 µs of each other using sender-receiver
time-stamping. The sources of jitter included several
factors: raw RF transmission jitter of ±1 µs on the
transmission propagation due to the internals of the radio,
hardware capture of the arriving pulse to within an accuracy
of ±0.25 µs, and synchronisation code path delay of an
additional ±0.625 µs. This implementation was only
possible because of the rich interface between the radio
hardware and system software.

Dutta (2004) advocates the use of reactive timesync
algorithms for random event detection, arguing that reduced
power consumption and low latency due to the lower
messaging frequency and no need for calibration,
respectively, map well to the needs of event detection.
Xu et al. (2004) used an approach similar to ours for
time-stamping data in a WSN for structural monitoring.
Both of these works focused on specific applications and
neither generalised their approach to be broadly applicable.

3 Canonical services

Many sensor network applications require time
synchronisation but the model of synchronisation that is
needed varies greatly. In practice, many application
developers resort to the virtual global time service without
considering other alternatives. Virtual global time is chosen
because it is conceptually simple, but since it is proactive
and message-intensive, virtual global time may use system

resources unnecessarily. We argue that abstracting common
timesync usage patterns from a number of existing
applications and standardising the interfaces of these
abstractions will help developers better identify the
synchronisation needs of sensor network applications and
help them choose the most efficient model for their needs.

This section presents a set of canonical time
synchronisation services derived from several well-known
and common sensor network applications. Our focus is on
the use of the services in actual applications, so we also
propose a set of application programming interfaces (APIs)
that could be used by these or other similar applications to
access timesync services. However, this list is neither
complete nor predictive; we did not abstract every single
use of timesync found in the literature nor did we attempt to
identify future models of synchronisation. Nevertheless, this
list of timesync services, each of which can be implemented
using the proposed ETA primitive, suggests that other
protocols, not on the list, could be implemented using ETA
as well.

Table 1 summarises the canonical services, APIs and
typical applications. Interestingly, we tried hard to find an
application that truly required global time synchronisation.
This indicates a possible mismatch between the areas which
have garnered much of the community’s attention and the
actual needs of common WSN applications.

Table 1 Canonical time synchronisation services, their typical
applications, and proposed API calls and events that
can be used in a general implementation. Events are
callbacks from a service layer to a higher layer and
are of the form OnXXX

Canonical service Typical applications APIs

Intrusion detection SendToSink
Countersniper system SendToAll

Event time-stamping

Source localisation OnReceive
Habitat monitoring SetAccuracy
Structural monitoring MarkStart
Environment
monitoring

MarkStop

Volcano event
monitoring

Target classification

Data series time-
stamping

Beamforming
GetGlobalTime
LocalToGlobal

Virtual global time Debugging traces

GlobalToLocal
Scheduled data
collection

Schedule Coordinated action

Communications
scheduling

OnSchedule

The remainder of this section delves into the canonical
services and their underlying abstractions, APIs, and
motivating applications in greater detail. For the remainder
of this paper, we restrict the discussion to only those

 Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services 243

applications which require temporal order, since logical and
delivery orders are trivially implemented with messaging
and causal ordering requires a temporal ordering capability.

3.1 Event time-stamping

A single, isolated event is observed and time-stamped by
one or more nodes at possibly different times. The
observation from each node is to be collected at one or more
sink nodes, either individually or in aggregate. The sink
node must determine the time-stamp of each event in the
sink’s local time, regardless of whether the sink is
coordinated with an external source of time like GPS.
This service extends to multiple events through repeated
invocation.

An event time-stamping API that consists of a Packet
data structure augmented with an eventTime field, along
with calls to convergecast a packet (i.e., send a packet
toward the sink node)

command bool SendToSink(Packet packet)

flood a packet (network-wide) to all other nodes

command bool SendToAll(Packet packet)

and signal an event when new packet is available at a node
(which is signalled at every intermediate hop)

event void OnReceive(Packet *packet)

appears sufficient to meet the timesync need of these
applications.

3.2 Data series time-stamping

One or more observer nodes are periodically sampling some
phenomena. The data series from each node are to be
collected at a sink node for correlated analysis. Data series
time-stamping requires time-stamps on each sample that are
both accurate with regard to a series (intra-series accuracy)
as well as accurate across series (inter-series accuracy).
Unlike single event time-stamping, which is a discrete event
and can benefit from discrete corrections such as a single
RBS exchange, data series time-stamping is a continuous
effort that requires continuous maintenance.

The precision of the data series time-stamps varies
across applications. The phenomena in habitat monitoring
are at a slow enough time scale that delivery order at a base
station is a reasonable form of time-stamping. In contrast,
the phenomena in structural health monitoring require
in-network stamping to within a fraction of a packet
transmission time. At the extreme are the applications in
which the precise phase difference of a signal arriving at
multiple nodes is important. For example, acoustic source
localisation and beamforming applications require that a
signal phase be measured to within a fraction of a cycle,
which for an acoustic signal in the kHz range might be just a
few tens of microseconds. In many signal processing
algorithms; samples cannot be dropped to compensate for
clock errors. The challenge is to compare observations when

the sampling frequencies of the sources are not identical, the
observations are collected over a (potentially long) period of
time, and samples cannot be dropped or added (i.e., time
must not have any sudden jumps).

A data series time-stamping API that includes calls to
set the required inter-series accuracy

command bool SetAccuracy(int micros)

indicates the beginning of a data series (which initiates any
under-the-hood work needed to meet the specified accuracy)

command bool MarkStart()

and indicates the end of a data series (which ends any
under-the-hood work started to meet the specified accuracy)

command bool MarkStop()

could meet the timesync need of these applications provided
that the underlying implementation could meet the
constraints. Each timesync implementation might have its
own method for satisfying the accuracy requirements of the
application and no implementation might be able to satisfy
all constraints.

3.3 Virtual global time

Virtual global time is perhaps conceptually the simplest of
the time synchronisation services to understand but is often
the one which requires the most overhead to achieve. The
basic idea is simple: a single, virtual, and globally shared
timebase is accessible at each node in the network. An
important question is where the timebase originates. Options
include an external source like GPS, a distinguished root
node, or some kind of network statistic as the network
mean.

A virtual global time API that includes calls to read the
current global time
command bool GetGlobalTime(int *time)

and to convert between the local times and their
corresponding global times
command bool LocalToGlobal(int *time)

command bool GlobalToLocal(int *time)

appears sufficient to meet the timesync need of these
applications.

3.4 Coordinated action

Coordinated action is similar to event time-stamping, except
that the event is in the future. Applications that require
coordinated action include scheduled data collection and
structural health monitoring. In the former, the action is a
discrete data collection; depending on the different required
fidelities, the synchronisation needed for coordinated action
can be used for the events themselves. In the latter, the
action is a data time series; although the coordination can
satisfy the inter-node accuracy, the data series service must
still be responsible for intra-node accuracy.

244 B. Kusý et al.

The challenge in coordinated action is that, unlike
simple time-stamping, it cannot benefit from post-facto
synchronisation such as an RBS exchange. However, unlike
virtual global time, the nodes do not need a continuous
synchronised time value: they merely need to agree on a
single point in time. While an implementation of this service
can depend on virtual global time, other implementation
options exist.

We propose a coordinated action API that includes calls
to schedule an action, in a node’s local time, with optional
quality of service parameters and number of repetitions
command bool Schedule(int *time)

command bool Schedule(int *time, int.
accuracy)

command bool Schedule(int *time, int
accuracy, int. repeat)

and signal an event when it is time to act, for the count-th
time, on some previously received coordinated action
request
event void OnSchedule(int count).

4 Sources of time synchronisation error

This section establishes the terminology and identifies the
various sources of error that contribute to time
synchronisation uncertainty. We analyse two fundamentally
different types of errors:

• time-stamping jitters encountered when transmitting
radio messages between nodes

• time errors caused by the manufacturing and operating
differences of physical clocks.

We also provide guidelines on how to design and implement
high precision one-way sender-receiver time-stamping
service for broadcasted messages.

4.1 Time-stamping jitter

The sources of errors in message time-stamping need
to be carefully analysed and compensated for, because
non-deterministic delays in radio message delivery
have magnitudes larger than the required precision of
time synchronisation. We use the following decomposition
of these errors, first introduced by Kopetz and
Ochsenreiter (1987) and later extended by Kopetz and
Schwabl (1989), Horauer et al. (2002) and Ganeriwal
et al. (2003). The presented list is a generalisation of a
similar list presented by Maroti et al. (2004).
• Send time. The time used to assemble the message and

issue the send request to the MAC layer on the
transmitter side. This depends on the system call
overhead and processor load.

• Access time. The delay incurred waiting for
access to the transmit channel up to the point when
transmission begins. This depends on the channel
contention.

• Transmission time. The time required for the sender to
transmit the message. This depends on the length of the
message and the speed of transmission.

• Propagation time. The time required for the message
to propagate from the sender to the receiver once it has
left the sender. This depends only on the distance
between the two nodes.

• Reception time. The time required for the receiver to
receive the message. The transmission and reception
times have similar characteristics and overlap, if the
propagation time is negligible.

• Receive time. Time to process the incoming message
and to notify the receiver application. Its characteristics
are similar to that of the send time.

We further analyse the sources of uncertainties in the
overlapping transmission and reception times by observing
an idealised point of radio message, such as the end of a
particular byte. We follow the transmission of this idealised
point through the software, hardware and physical layers of
the wireless channel from the sender to the receiver. The
following delays in the propagation of the idealised point
seem to be the most important.

• Interrupt handling time. The delay between the radio
chip raising, and the microcontroller responding, to an
interrupt by recording a time-stamp.

• Encoding time. The time required for the radio chip to
encode and transform a part of the message to
electromagnetic waves. This starts when the radio chip
initiates the transfer of the idealised point.

• Decoding time. The time required for the radio
chip on the receiver side to transform and decode
the message from electromagnetic waves to
binary data. This ends when the radio chip raises an
interrupt indicating the reception of the idealised point.

Some radio chips cannot capture the byte alignment of the
transmitted message stream on the receiver side and the
radio stack has to determine the bit offset of the message
from the alignment of a known synchronisation byte. Since
the transmission time of a byte is a few hundred
microseconds at 38.4 kbps, the delay caused by the incorrect
byte alignment must be compensated for.

• Byte alignment error. The delay incurred because of the
different byte or data segment alignment of the sender
and receiver. This is deterministic and can be computed
at the receiver side from the bit offset and the speed of
the radio.

 Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services 245

The list provided above characterises phenomena relevant to
the time-stamping of messages transmitted over the
wireless channel. We direct the reader to a paper by Maróti
et al. (2004) for a more comprehensive analysis of these
sources on the Mica2 platform. Note that some radio
technologies are not impacted by all these sources of error.

4.2 Physical clocks

Computer systems typically measure time in discrete steps
by counting the oscillations of a physical clock. Such clocks
are driven by quartz crystals, ceramic resonators, or resistor-
capacitor oscillator circuits, depending on the accuracy,
stability, power, startup time, and cost requirements
of the applications. More advanced solutions are
available as ultra-stable oscillators constructed from
temperature-compensated sapphire resonators. However, for
the majority of applications, common quartz crystals
provide a reasonably accurate and cost-effective solution.
We assume that a quartz crystal is the basis of the physical
clock for the remainder of this section and use the terms
crystal and physical clock interchangeably.

A quartz crystal oscillator is an analog component which
outputs a continuous-time sinusoidal signal converted to a
digital signal by microcontroller. The period of the physical
clock sets the length of the discrete time quantum, or
granularity, of the timebase. All synchronisation protocols
encounter errors caused by the insufficient precision of the
time representation when an analog-digital boundary is
crossed (like event detection or time-stamping). The
exception to this is the time-triggered technology that can
phase synchronise the clocks across the distributed system:
• Time representation error: the delay between an event

and the nearest (or next) representable time value

Under ideal circumstances, physical clocks oscillate at a
constant frequency. In the real world, manufacturing
variations and exposure to out-of-tolerance conditions
(e.g., mechanical shock) result in permanent frequency
errors of crystals, and variations in temperature and age
result in short-term errors of the crystals.
• Frequency skew. Under specified conditions at a

nominal ambient temperature, the difference between
the crystal frequency and the nominal frequency.
Usually expressed as ∆f/f with typical values around
±50 ppm.

• Temperature characteristics. Taking the frequency
at a nominal ambient temperature as the reference
(usually +25°C), the change in frequency with respect
to a change in the ambient temperature. Different
crystal types have different temperature characteristics:

• for tuning-fork crystals, ∆f/f depends
quadratically on the difference between the
ambient and the nominal temperature

• for AT-cut crystals, the relationship between ∆f/f
and the temperature difference is described by a
3rd order polynomial equation

• Ageing. Amount of frequency drift when operated
under the specified conditions for a specified term.
A typical value for ageing might be –5 ppm in the first
year.

4.3 Minimising the time-stamping jitter

The uncertainties of the send, receive, access and byte
alignment times are best eliminated by time-stamping the
message in the MAC-layer, as is done in several
time synchronisation protocols. The propagation time
cannot be calculated or compensated for within the
transmission of a single message. However, in static
networks it has no jitter and over short distances (less than
300 meters) its duration is negligible (less than one
microsecond). We argue that the message needs to be
time-stamped at an idealised point, practically when an
interrupt is raised by the radio. This eliminates the effect of
the overlapping transmission and reception times.
The jitter in the interrupt handling time is best eliminated by
utilising a capture register on the microcontroller. If the
time-stamp is taken in software, it is important to
minimise the length of all atomic sections in the
application to minimise the amount of time that interrupts
are disabled. The encoding time lasts several hundreds of
microseconds but usually has very low jitter. On the
other hand, the radio technology, signal strength
fluctuations and bit synchronisation errors will introduce
jitter in the decoding time. The following novel technique
can be used to reduce the jitter of the encoding,
decoding and interrupt handling times. We record multiple
time-stamps both at the sender and receiver sides as the
message is being transmitted, then using statistical analysis
we arrive at the final time-stamps (one at the sender and one
at the receive side) that has lower jitter than the individual
ones. Details of the statistical analysis are presented by
Maróti et al. (2004).

The latest generation of radios make the processor-radio
interface richer without burdening the processor with the
overhead of directly coordinating the transmission. Such
improvements also enable fine-grained timing information
to be communicated from the radio to the processor while
using an abstract and high-level interface. For example, the
Chipcon CC2420 radio, which supports the IEEE 802.15.4
standard, allows random access into the transmit FIFO
during transmission (Chipcon, 2003). Such access to the
transmit queue, when coupled with the Start of Frame
Delimiter (SFD) output signal – a deterministic hardware
interrupt on the CC2420 – enables fine-grained message
time-stamping with virtually no jitter uncertainty on the
transmit end and ±0.125 µs of uncertainty on the receive

246 B. Kusý et al.

 end. By connecting the SFD signal to a timer capture pin on
the processor, accurate time-stamping on the order of the
time representation error is possible.

The presented techniques reduce only the jitter of these
times, but do not estimate their absolute value. The sum of
these delays is the difference between the sender and
receiver side time-stamps. This sum can be measured with a
one-time calibration procedure utilising a many-to-many
message handshake similar to the RBS algorithm. We point
out that using software tools only, it is impossible to
measure the absolute value of the encoding and decoding
times separately, only their sum.

We direct the reader to the paper by Maróti et al. (2004)
for a more comprehensive analysis of these techniques on
the Mica2 platform in which 1.4 microsecond
time-stamping precision was reported. Our key observations
is that with deterministic MAC-layer time-stamping, we can
eliminate the runtime calibration phase that is required in
the work of Romer (2004) and Elson (2002), the need for a
‘third party’ node as suggested by Elson (2002) and the
Single-Pulse Synchronisation presented by Elson (2003) for
many of the existing applications of sensor networks.

4.4 The choice of local time

The first key design choice in any time synchronisation
protocol is the source of times that we want to synchronise.
We argue that each node must have a free running local
clock whose offset and skew is only measured and
compensated for, but never altered. This local clock gives a
natural time line where events are recorded, actions are
scheduled and calculations are performed.

The time representation error of events can never be
eliminated, but it can be reduced by using a higher
frequency crystal. For example, the Mica2 mote includes a
32.768 kHz crystal which provides 30.52 µs granularity
which is sufficient for many applications. If a finer
granularity clock is needed, the Mica2 also includes a
7.3728 MHz crystal which provides 0.1356 µs granularity.

The actual frequency of a particular crystal instance can
take any value within the range specified by the tolerance
precision. If a particular crystal’s frequency is measured at
multiple temperatures, we can create a calibration table that
provides a frequency skew factor for every ambient
temperature. Typically, this kind of calibration is performed
at manufacture time for instrument-grade electronics like
oscilloscopes and counters. The calibration must be repeated
periodically because ageing and shock can cause frequency
variations. For WSNs that contain hundreds or thousands of
nodes, repeated manual calibration is simply not an option.
Instead, it might be possible to perform distributed
parameter calibration, using the fact that sensor nodes have
multiple crystals with different temperature characteristic
curves. For example, on the Mica2 motes, the 32 kHz clock
is based on a tuning fork crystal while the 7 MHz clock is
an AT-cut crystal.

5 Implementation of canonical services

We argue that both the development and use of timesync
services will be greatly enhanced by shielding developers
from the myriad sources of time-stamping errors presented
in Section 4 by encapsulating these errors in a timesync
primitive. Our reasons are as follow.

• The implementation of a timesync primitive is best
done along with the analysis of the sources of error
by the hardware domain experts. Consequently, the
primitive can provide fine-tuned performance by
reducing or eliminating nearly all sources of timesync
errors.

• The timesync primitive is well suited to the component
based architecture of distributed applications and can
simplify the implementation of timesync services.

• The timesync primitive improves the portability of
timesync services to a different hardware platform by
isolating code changes to the timesync primitive.

• Finally, the timesync primitive can be implemented
as a service provided by the operating system, making
it easier to access hardware interfaces directly and en
able higher precision time synchronisation protocols
to be implemented (Ganeriwal et al., 2003; Maróti
et al., 2004) than would be possible otherwise.

In the remaining part of this section, we introduce our
time-stamping primitive and show how it can be used
to implement two of the canonical services described
in Section 3. We demonstrate the significant decrease in
complexity of the implementation of these services when
compared to the existing protocols found in the literature.

5.1 The elapsed time on arrival time-stamping
primitive

Conceptually, the elapsed time on arrival (ETA) algorithm
is useful in the case when a sensor node detects a certain
phenomenon of interest, or an event, and a neighbour of the
sensor node needs to know the time of this event. ETA
allows neighbouring nodes to establish a common time base
by sending a single radio message transmission. In our
approach, the times of all events of interest are recorded in
the local time of a node and inter-node time conversions
occur whenever messages are transmitted from one node to
another. At transmission time, the elapsed time since the
event occurrence is computed and included as a separate
field in the message. On receipt, a node computes the event
time by subtracting the elapsed time from the receiving
node’s local time.

The implementation details for reducing timesync
uncertainty for the Mica2 platform were discussed in
Section 4.3 and can be also found in the work by Maróti
et al. (2004). The pseudo code of the ETA algorithm is
shown in Figure 1.

 Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services 247

Figure 1 The elapsed time on arrival (ETA) algorithm

Each node accesses its local clock or timer through the
GetLocalTime call. On an event occurrence, the local
time is recorded in the eventTime field and the event
message is enqueued for the transmission. When the event
message is scheduled and the idealised point of the message
is being transmitted (ostensibly after some delay in the
media access control layer), both the sender and the
receivers record their current local time into the
transmissionTime field. The sender also updates the
eventTime field to contain the elapsed time since the
event occurrence. Note that the transmissionTime is
not transmitted over the wireless channel to the neighbours.
After the whole message has been received, the eventTime
is reconstructed on the receiver side by subtracting the
elapsed time from the receptionTime. The key enabler
of ETA is the ability to update the content of the radio
message (to update the eventTime field) while the
message is being transmitted.

The proposed time-stamping protocol eliminates or
reduces all sources of time-stamping error except for
propagation time and the effects of the clock skew between
the sender and receiver while a message is waiting in the
queue. Neither of these errors can be estimated with a single
radio message and hence this estimation is left for higher
layers to implement. The overhead of the algorithm is a
single field in the transmitted message. After message
transmission is complete, the sender and all receivers know
the time of the transmission, as well as the time of the event
in each receiver’s local time base.

5.2 Event time-stamping service

The Routing Integrated Time Synchronisation (RITS), a
reactive time synchronisation protocol, can be used to
obtain event detections at multiple observers in terms of
local time of the sink to within microseconds. RITS is an
extension of time-stamping primitive ETA over multiple
hops. It is achieved by integrating ETA into the multi-hop
routing engine DFRF presented by Maroti (2004).

After detecting an event, the observer stores the relevant
data in a local data structure along with the local time of the

event occurrence and uses one of the methods of RITS to
send the data to the sink. RITS, being a routing engine,
sends the packet to the sink along a multi-hop path while
maintaining the event time using ETA. At each hop it
converts the event time from the local time of the sender to
the local time of the receiver.

The details of our implementation are shown in
Figure 2. Upon receiving a request to send a data
packet, RITS creates a TimeStampedRITSMessage
and off-loads all the local time conversion details
to the ETA algorithm. Upon receiving a
TimeStampedRITSMessage, RITS creates a new
packet and associates with it, message. eventTime
which is the event time converted by ETA to the local time
of the receiver. RITS then signals the reception of packet to
the application level and possibly enqueues the packet for
the further transmission.

Figure 2 Pseudo code of the RITS implementation

5.3 Virtual global time service

Rapid Time Synchronisation (RATS), a proactive time
synchronisation protocol, achieves network-wide timesync
in medium size networks with microsecond precision and
rapid convergence. The basic idea is the same as in RITS,
except that the direction of messages is reversed: instead of
convergecast from multiple nodes to the sink, we use a
broadcast from a single node, the root, to all other nodes in
the network.

Time synchronisation is initiated by the root by
broadcasting a message containing two fields,
rootEventTime and eventTime, which are both
initialised to the same value in the root’s local time (the
current time). Network wide broadcast is used to transmit
the root’s message to all nodes in the network. The
rootEventTime field is not modified during the
broadcast, while ETA converts the eventTime field to the
local time of the receiver of the message. Thus when a node
receives the message, it obtains two times corresponding to
the same time instant: rootEventTime, in the local time
of the root, and eventTime, in the local time of the node.

248 B. Kusý et al.

We call the pair (rootEventTime,eventTime) a
synchronisation point and use several of them to estimate
the offset and skew of the local clock of receiver to the
root’s clock. Consequently, the local time of the root
becomes the global time in the network.

The most widely used method to estimate the clock drift
of a node to the clock of the root is linear regression
(Maroti et al., 2004; Elson, 2002): a fixed number of
synchronisation points are locally stored in a table at each
node, a linear regression line is fit to these points and the
slope and intercept of the line is used to estimate the root’s
time in the future. Since the drift of the clock may change
over time (see Section 4), the root needs to rebroadcast
synchronisation messages periodically. We use a sequence
number field in the RATS message to distinguish new
synchronisation messages from old ones. We used RITS to
implement RATS (see Figure 3) but it is straightforward to
implement RATS directly over ETA.

Figure 3 Pseudo code of the RATS implementation

6 Evaluation

We implemented the ETA, RITS and RATS protocols in
TinyOS (Hill, 2000) on the UC Berkeley Mica2 platform.
Even though the RITS and RATS protocols are simple
extensions of ETA, our experimental evaluation shows that
their performance is comparable to, if not better than, the
leading timesync algorithms found in the WSN literature.

6.1 Evaluation of RITS: routing integrated time
synchronisation

We tested the performance of RITS in an experimental
setup using 45 Mica2 motes arranged in a grid. Each node
was able to communicate only with its neighbours as shown
in Figure 4, forming a 10-hop network. This constraint was
enforced in software. The test scenario involved
multiple observers detecting the same event and
reporting the event detection times to the sink. We
simulated the event detection by a radio message that was
transmitted by a single node and received by all the nodes
that were, at most, two hops away from the sender. Figure 4
shows the sink, the nodes, the radio links and the detection
radius of an event.

Figure 4 The layout of the RITS experiment: a node
communicates with at most eight nodes and an event is
detected at most at 12 nodes

Each node recorded the time of arrival of the message as an
event detection time (message.receptionTime in
Figure 1), created a detection message consisting of the id
of the node (message.nodeID) and the detection time
(message.eventTime) and sent this message to the
sink. Consequently, the sink received detection messages
from up to 12 different nodes. Each such message contained
the time of the simulated event at a particular node
converted by RITS to the local time of the sink. The times
reported by two different nodes should be the same if we
neglect the propagation time of a radio message. However,
the time-stamping error as well as the clock skew error
cause a small variance of the received times. For each group
n reported times we calculate the maximum and the average

of the
2
n

 pairwise errors in the group. We call these

values and average and maximum synchronisation error,
respectively.

We broadcasted the event simulation message five
times with 100 ms delays in a single simulation round.
The sender of the event simulation message was chosen
randomly both within and across rounds. We initiated
consequent simulation rounds with a 30-second period, let
the experiment run for one and one-half hours and
collected data for 900 simulated events. We plot the
histogram of maximum synchronisation error in Figure 5.
The maximum and average errors of the maximum
synchronisation error over all rounds were 80.19 µs and
7.86 µs respectively.

Figure 5 Shows the histogram of the maximum pairwise error in
the RITS experiment

 Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services 249

The performance of RITS is principally affected by two
factors. First, variations in clock crystal frequencies – we
have observed delays of up to 17 seconds between the event
happening and the event notification message arriving to the
sink in a particular round. The frequency error of a typical
oscillator is in the range of 10 –100 ppm, therefore, a
7 MHz MICA2 oscillator can introduce significant errors
over these long delays. Second, variations in the jitter of
time-stamping – this affects RITS the same way as any
other timesync protocol that uses radio message time-
stamping to establish a common time base.

The timesync accuracy of RITS as shown by our
experiment is slightly worse than the accuracy of published
proactive algorithms by Ganeriwal et al. (2003), Maroti et
al. (2004) and Elson (2002). However, we argue that this
accuracy is sufficient for most applications and that the
energy-quality tradeoffs of RITS vs. proactive protocols is
acceptable, and even desirable, in many cases.

The benefits of RITS over proactive timesync
protocols are as follows. First, the drifts of the local clocks
of the nodes do not need to be calculated and maintained in
RITS whereas proactive algorithms require periodic
resynchronisation. Second, RITS can be powered down
completely and woken up by the event itself (as in Lédeczi
et al., 2005), which enables more sophisticated power
management techniques than proactive protocols which
require the nodes to be continuously active, even between
synchronisation events, since at least local clocks need to be
running. Third, RITS introduces minimal communication
overhead; there is no need for time synchronisation related
messages as in proactive algorithms and only a single field
needs to be included in the transmitted message.

6.2 Evaluation of RATS: rapid time synchronisation

We evaluated the performance of RATS using the same test
setup as was used for FTSP (Maróti et al., 2004). We set up

60 Mica2 motes in a 5 × 12 grid so that each node had
up to eight neighbours enforced in software. This is
similar to the RITS test scenario shown in Figure 4. The
test setup involves 60 synchronising nodes, the
reference broadcaster that queries the global time estimates
of the synchronising nodes, and the base station that
collects the reported global times. The reference
broadcaster and the base station are used just for
evaluation purposes; they play no role in the
synchronisation algorithm.

The root was programmed to transmit synchronisation
messages first for 10 seconds with a period of two seconds
and then for the rest of the experiment with a period of
30 seconds. The reference broadcaster queried the global
time from all the nodes with a period of five seconds during
the first two minutes and with a period of 23 seconds (which
is a relative prime to 30) the rest of the time. In each
reference broadcast we obtained up to 60 reported global
times, one of them being the root’s time. For each reference
broadcast, we computed the maximum and the average
absolute errors as the maximum and the average absolute
difference between the root’s time and the other times for
each reference broadcast round.

We ran the experiment for six hours and achieved
network-wide synchronisation (the point in time when at
least two synchronisation points had been received by all
nodes) only four seconds after switching on the root.
Over all rounds, the maximum and average errors of RATS
were 26 µs and 2.7 µs, respectively. This is in contrast to the
10-minute convergence time, 14 µs maximum error and
2.3 µs average error of FTSP (Maroti et al., 2004). We note
that the FTSP experiment had only six hops whereas our
experiment had 11 hops, so we suspect that the maximum
and average errors of RATS and FTSP might have been
closer if FTSP were synchronising over 11 hops. Figure 6
shows the maximum and average errors for each round of
the experiment.

Figure 6 The RATS experiment showing the maximum and average errors of the reported global times. The figure on the left shows the
first 10 minutes and the figure on the right shows the whole experiment. The synchronisation was achieved after 4 seconds and
the average error was 2.7 µs in the 11 hop network

At the beginning of experiment the errors were generally
larger than later on. This is expected as initially only a few
datapoints were available in the regression table and the
clock skew estimate was not as accurate. Moreover, errors

in individual measurements have a much larger effect
on the accuracy of the skew estimation, because initially
the regression table covers only a few seconds. The data
also illustrate this point: when the protocol switched to the

250 B. Kusý et al.

30-second period, the maximum error gradually increased to
26 µs and then gradually decreased as the skew estimates
improved. More generally, the tradeoffs between RATS and
FTSP are as follows.

Network-wide convergence time of timesync in RATS
was shown to be four seconds for 11 hops; it took 10
minutes to achieve network-wide synchronisation of FTSP
for a 6-hop network as reported by Maróti et al. (2004).
Depending on the accuracy needs of the application it is
possible to achieve sub-second convergence using RATS by
decreasing the initial synchronisation period even further.

The robustness of RATS is superior to FTSP in two
regards. First, the synchronisation error of a node in RATS
does not depend on the current clock drift estimation of the
nodes on the route from the root but it does for FTSP.
Second, the synchronisation message from the root arrives
at each node along multiple routes, giving the node multiple
local times for each global time. RATS takes the median of
the received local times as its synchronisation point, which
is robust to outliers, and allows RATS to tolerate faulty or
adversarial nodes whereas FTSP cannot.

Unlike FTSP, RATS cannot maintain network-wide
synchronisation if the network is partitioned and is
vulnerable to a root failure. However, since most WSN
applications depend on a gateway for wide-area network
access, we have the base station already. Since RATS floods
the network with radio messages during synchronisation
times, the available bandwidth of the network is temporarily
but dramatically reduced. FTSP, in contrast, distributes the
radio message load evenly and thus it provides constant
radio bandwidth for applications.

7 Conclusions

Advances over the last few years in radio and wireless
sensor network design enable, and increasingly challenging
application requirements drive us, to continuously
reconsider the boundaries between the hardware, operating
system, middleware and application layers. Single layer
solutions to several key problems that inherently touch
multiple layers such as time synchronisation in wireless
networks are likely to be less efficient than those that can
carefully address the challenges at each layer. The price one
must pay for the increased control and efficiency, however,
is additional complexity between the layers. We argue that
the solution is to minimise the number of different
interfaces between the layers but increase their expressive
power.

Our first key contribution is the careful analysis of the
sources of time synchronisation jitter between the operating
system, radio chip and wireless channel. We present a
comprehensive list of software techniques and
recommended hardware solutions to maximise the precision
of the message time-stamping. Then we propose a time
synchronisation primitive, called elapsed time on arrival
(ETA) which is a one-way, sender-receiver time-stamping
service for broadcasted messages. On the Mica2 platform its
precision is better than 1.4 µs between the sender and/or any

of the receivers. It allows the translation of event times,
expressed in the local clock of the nodes, from the sender to
its neighbours. Other than the event time, it has absolutely
no data overhead in the message. The two key enablers of
ETA are 1) integration with the MAC-layer to minimise the
jitter, and 2) the ability to embed the time-stamp in the
message while it is being transmitted.

As our second contribution, we have identified a small
set of canonical services together with their application
programming interfaces that capture the time
synchronisation requirements of actual wireless sensor
network applications. We argue that abstracting common
timesync usage patterns from the existing applications will
help application developers to identify their time
synchronisation needs. We propose to build canonical
services on top of an explicit timesync primitive, such as
our ETA, and show that their implementation with ETA is
less complex and has comparable or better precision.
The Event Time-Stamping canonical service is implemented
by the Routing Integrated Time Synchronisation (RITS)
protocol, which is the multi-hop extension of ETA.
Combined with a convergecast routing policy, it allows the
root node to correlate the detection time of a single event at
multiple observers. In a 45-node 10-hop network the maximum
and average time synchronisation errors were 80 µs and
8 µs, respectively. The Virtual Global Time canonical service
was implemented by the Rapid Time Synchronisation
(RATS) protocol, in which a root node broadcasts its local
time in the network, using RITS. In a 60-node 10-hop
network the algorithm achieved network-wide synchronisation
in four seconds, and the maximum and average time
synchronisation errors were 26 µs and 2.7 µs, respectively.
In a similar setup, the Flooding Time Synchronisation
Protocol (FTSP) achieved network-wide synchronisation in
10 minutes, while the maximum and average errors were
14 µs and 2.3 µs, respectively.

Acknowledgements

The DARPA/IXO NEST program has partially supported
the research described in this paper.

References
Blum, P., Meier, L. and Thiele, L. (2004) ‘Improved interval-based

clock synchronization in sensor networks’, Third
International Symposium on Information Processing in
Sensor Networks, Berkeley, California, USA, pp.349–358.

Chipcon (2003) Chipcon CC2420 Datasheet: 2.4 GHz IEEE
802.15.4/ZigBee-ready RF Transceiver (v 1.2), Chipcon SA,
Olso, Norway.

Dai, H. and Han, R. (1994) ‘Tsync: A lightweight bidirectional
time synchronization service for wireless sensor networks’,
ACM SIGMOBILE Mobile Computing and Communications
Review, Vol. 8, No. 1, pp.125–139.

Dutta, P.K. (2004) On Random Event Detection in Wireless Sensor
Networks, Master’s Thesis, The Ohio State University,
Columbus, Ohio, USA

 Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services 251

Elson, J. (2002) ‘Fine-grained network time synchronization using
reference broadcasts’, Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI 2002),
Boston, Massachusetts, USA, December.

Elson, J. (2003) Time Synchronization in Wireless Sensor
Networks, PhD Thesis, University of California,
Los Angeles.

Elson, J. and Romer, K. (2002) ‘Wireless sensor networks: a new
regime for time synchronization’, Proceedings of the First
Workshop on Hot Topics in Networks (HotNets-I), Princeton,
New Jersey, October 28–29.

Ganeriwal, S., Kumar, R. and Srivastava, M.B. (2003)
‘Timing-sync protocol for sensor networks’, ACM Sen-Sys
2003, Los Angeles, California, USA.

Hill, J. (2000) A Software Architecture Supporting Networked
Sensors, Master’s Thesis, U.C Berkeley Dept. of Electrical
Engineering and Computer Sciences, San Francisco,
California, USA.

Hill, J. and Culler, D. (2002) ‘Mica: a wireless platform for deeply
embedded networks’, IEEE Micro, Vol. 22, No. 6, pp.12–24.

Horauer, M., Schossmaier, K., Schmid, U., Holler, R. and Kero, N.
(2002) ‘Evaluation of a high precision time synchronization
prototype system for ethernet lans’, 34th Annual Precise Time
and Time Interval Meeting (PTTI), Reston, Virginia, USA,
December.

Kopetz, H. (1997) Real-Time Systems: Design Principles for
Distributed Embedded Applications, Kluwer Academic
Publishers, Norwell, Massachusetts, USA.

Kopetz, H. and Ochsenreiter, W. (1987) ‘Clock synchronization in
distributed real-time systems’, IEEE Transactions on
Computers, Vol. C-36, No. 8, pp.933–939.

Kopetz, H. and Schwabl, W. (1989) Global Time in Distributed
Real-time Systems, Technical Report 15/89, Technische
Universitat Wien, Austria.

Lamport, L. (1978) ‘Time, clocks, and the ordering of events
in a distributed system’, Commun. ACM, Vol. 21, No. 7,
pp.558–565.

Ledeczi, A., Volgyesi, P., Maroti, M., Simon, G., Balogh, G.,
Nadas, A., Kusy, B., Dora, S. and Pap, G. (2005)
‘Multiple simultaneous acoustic source localization in urban
terrain’, Proc. 4th International Symposium on Information
Processing in Sensor Networks (IPSN 2005), Los Angeles,
California, USA, April.

Li, Q. and Rus, D. (2004) ‘Global clock synchronization in sensor
networks’, IEEE INFOCOM, Hong Kong, China, March.

Maroti, M. (2004) ‘Directed flood-routing framework for wireless
sensor networks’, Proc. 5th ACM International Middleware
Conference, Toronto, Ontario, Canada, pp.99–114.

Maroti, M., Kusy, B., Simon, G. and Ledeczi, A. (2004)
‘The flooding time synchronization protocol’, Proc. 2nd ACM
International Conference on Embedded Networked Sensor
Systems (SenSys 2004), Baltimore, Maryland, USA, pp.39–49.

Marzullo, K. and Owicki, S. (1983) ‘Maintaining the time in a
distributed system’, Second Annual ACM Symposium on
Principles of Distributed Computing, pp.295–305.

Meier, L., Blum, P. and Thiele, L. (2004) ‘Internal synchronization
of drift-constraint clocks in ad-hoc sensor networks’, Fifth
ACM International Symposium on Mobile Ad Hoc Networking
and Computing, Tokyo, Japan, pp.90–97.

Reichenbach, H. (1957) The Philosophy of Space and Time,
Dover, New York.

Romer, K. (2001) ‘Time synchronization in ad hoc networks’,
Proceedings of the International Symposium on Mobile Ad
Hoc Networking & Computing (MobiHoc ’01), Long Beach,
California, USA, October 4–5.

Romer, K., Blum, P. and Meier, L. (2005) ‘Time synchronization
and calibration in wireless sensor networks’, in Stojmenovic, I.
(Ed.): Handbook of Sensor Networks: Algorithms and
Architectures, Wiley and Sons, pp.199–237.

Schmid, U. and Schossmaier, K. (1997) ‘Interval-based
clock synchronization’, Real-time Systems, Vol. 12, No. 2,
pp.172–228.

Sichitiu, M.L. and Veerarittiphan, C. (2003) ‘Simple, accurate time
synchronization for wireless sensor networks’, IEEE Wireless
Communications and Networking Conference (WCNC03),
New Orleans, Louisiana, USA. March 16–20.

Sivrikaya, F. and Yener, B. (2004) ‘Time synchronization in
sensor networks: A survey’, IEEE Network, Vol. 18, No. 4,
pp.45–50.

Su, W. and Akyildiz, I.F. (2004) ‘Time-diffusion synchronization
protocol for sensor networks’, To appear in IEEE/ACM
Transactions on Networking, Vol. 13, No. 1.

van Greunen, J. and Rabaey, J. (2003) ‘Lightweight time
synchronization for sensor networks’, 2nd ACM International
Workshop on Wireless Sensor Networks and Applications,
pp.11–19.

Xu, N., Rangwala, S., Chintalapudi, K., Ganesan, D., Broad, A.,
Govindan, R. and Estrin, D. (2004) ‘A wireless sensor
network for structural monitoring’, Proc. 2nd ACM
International Conference on Embedded Networked Sensors
Systems (SenSys 2004), Baltimore, Maryland, USA, pp.13–14.

