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Abstract: Time synchronisation is one of the most important and fundamental middleware 
services for wireless sensor networks. However, there is an apparent disconnect between existing 
time synchronisation implementations and the actual needs of current typical sensor network 
applications. To address this problem, we formulate a set of canonical time synchronisation 
services distilled from actual applications and propose a set of general application programming 
interfaces for providing them. We argue that these services can be implemented using a simple 
time-stamping primitive called Elapsed Time on Arrival (ETA) and we provide two such 
implementations. The Routing Integrated Time Synchronisation (RITS) is an extension of ETA 
over multiple hops. It is a reactive time synchronisation protocol that can be used to correlate 
multiple event detections at one or more locations to within microseconds. Rapid Time 
Synchronisation (RATS) is a proactive timesync protocol that utilises RITS to achieve  
network-wide synchronisation with microsecond precision and rapid convergence. Our work 
demonstrates that it is possible to build high-performance timesync services using the simple 
ETA primitive and suggests that more complex mechanisms may be unnecessary to meet the 
needs of many real world sensor network applications. 
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1 Introduction 

Time synchronisation has been extensively studied in the 
context of distributed systems theory, internetworks, local 
area networks, real-time control systems, wireless sensor 
networks (WSNs), and many applications. These different 
contexts have led to different notions of time. A common 
notion of time allows us to reason about the ordering of 
events, the causal relationships and correlations between 
events, the rate of change of observations over time, and 
also enables the coordination of future actions. Events in 
distributed systems can be specified in the temporal, causal, 
logical, and delivery order, as well as expressed in local and 
global time frames (Kopetz, 1997; Lamport, 1978; 
Reichenbach, 1957). 

In the context of WSNs, timesync commonly refers to 
the problem of synchronising clocks across a set of sensor 
nodes which are connected to one another over single- or 
multi-hop wireless communications channel. Many existing 
sensor network applications require temporal ordering of 
events either relative to other events or relative to an 
absolute external frame of reference. A variety of time 
synchronisation algorithms have been proposed to address 
both the temporal ordering of events and the more general 
problem of establishing a virtual global timebase across a 
network. Often, these timesync algorithms require nodes to 
involve third parties (such as reference broadcasters), 
perform two-way handshakes, exchange multiple messages, 
or perform computationally expensive optimisations, for 
example, to maintain synchronised clocks and a consistent 
sense of network time. Section 2 surveys the related work 
on time synchronisation in sensors networks, describes how 
they correlate with the canonical services and what sources 
of errors they eliminate. 

Since all of these operations consume extra system 
resources, but not all applications have identical 
synchronisation needs, we may find that system resources 
are being wasted unnecessarily. This suggests that these 
more complex and intricate mechanisms may be 
inappropriate to meet the needs of many common sensor 
network applications. We suggest that a better match 
between applications and timesync implementations is 
possible, but it requires a better understanding of the ways 
in which applications use timesync services. Section 3 
explores the time synchronisation requirements of common 
sensor applications and distils a set of canonical timesync 
services from several application domains into a set of 
timesync application programming interfaces. 

Section 4 analyses the sources of time-stamping jitter 
and physical clock variation. We suggest several 
mechanisms that exploit the rich interfaces between the 
software and hardware layers to minimise the  
non-determinism. Our implementation of these mechanisms 
is a time-stamping primitive called elapsed time on arrival 
(ETA), which is a medium access control layer plug-in that 
reduces or eliminates nearly all sources of time-stamping 
jitter. 

Timesync services can utilise ETA as a low-level 
primitive provided by the operating system that abstracts 
underlying hardware and drivers. Porting a timesync service 
to a different hardware platform requires simply porting the 
ETA primitive to that platform, promoting loose-coupling 
and reuse of timesync code. To demonstrate the versatility 
of ETA, we implemented two general timesync services. 
Routing integrated time synchronisation (RITS) is a reactive 
time synchronisation protocol that can be used to correlate 
multiple event detections at one or more locations to within 
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microseconds. Rapid Time Synchronisation (RATS) is a 
proactive timesync protocol that achieves network-wide 
synchronisation with microsecond precision and rapid 
convergence. The design details of ETA, RITS, and  
RATS are presented in Section 5 and a performance 
evaluation is presented in Section 6. Section 7 presents the 
conclusions. 

Conceptually similar time-stamping primitives have 
been proposed in the literature but no earlier implementation 
has achieved comparable performance. As a consequence, 
other implementations have resorted to more complex 
designs to mitigate the effects of timing jitter. Our work 
suggests that these more complex timesync mechanisms 
may be unnecessary to meet the needs of many common 
sensor network applications. 

2 Related work 

WSNs present a unique set of challenges not found in 
traditional networks such as unreliable, and possibly, 
unidirectional links, dense and dynamically changing 
topology and extremely limited energy, computational 
power and memory resources. Consequently, many results 
in the rich literature on time synchronisation were not 
directly applicable in WSNs, and a number of new 
algorithms and protocols have been proposed. 

Sivrikaya and Yener (2004) present a survey of sensor 
network time synchronisation protocols. Their paper 
outlines the synchronisation problems using computer 
clocks as the timebase, identifies common challenges for 
synchronisation methods, and enumerates the requirements 
of synchronisation schemes for sensor networks. One of 
these requirements, called immediacy, quantifies the 
allowable latency when reporting an event to a sink node. 
The paper claims that immediacy requirements might 
prevent the use of certain protocols which, the paper  
claims, in turn, require that nodes be presynchronised at all 
times. We show this claim to be inaccurate; that 
presynchronisation is not necessary; and that our post-facto 
approach can convey the event time just as rapidly. 

A more in-depth analysis of the timesync problem is 
presented by Romer et al. (2005) which extends 
significantly the analysis of essential issues surrounding 
timesync for sensor networks presented by Elson and  
Romer (2002). This book chapter describes a system  
model, identifies classes of synchronisation, presents 
synchronisation techniques, reviews and classifies ten 
concrete timesync algorithms from the literature, proposes 
evaluation strategies, and casts time synchronisation as a 
special case of the calibration problem. Of particular interest 
to us are the descriptions, classifications, and evaluations of 
the ten timesync protocols: Time-stamp Synchronisation 
(TSS) (Romer, 2001), Reference Broadcast Synchronisation 
(RBS) (Elson, 2002), Tiny-Sync and Mini-Sync (TS/MS) 
(Sichitiu and Veerarittiphan, 2003), Lightweight Time 
Synchronisation (LTS) (van Greunen and Rabaey, 2003), 
Timing-Sync Protocol for Sensor Networks (TPSN) 
(Ganeriwal et al., 2003), TSync (Dai and Han, 1994), 

Interval-Based Synchronisation (IBS) (Marzullo and 
Owicki, 1983; Blum et al., 2004; Meier et al., 2004; Schmid 
and Schossmaier, 1997), Flooding Time Synchronisation 
Protocol (FTSP) (Maróti et al., 2004), Asynchronous 
Diffusion (AD) (Li and Rus, 2004), and Time Diffusion 
Synchronisation (TDP) (Su and Akyildiz, 2004). Most 
relevant to our work are TSS, RBS, TPSN, FTSP, and the 
timesync protocol used in a structural monitoring 
application by Xu et al. (2004). 

The Time-Stamp Synchronisation (TSS) approach is 
conceptually similar to our time-stamping primitive. One 
drawback to the TSS approach is the requirement for 
multiple floating-point operations at each node which, on 
mote-class devices, is expensive. Another, more significant 
drawback stems from the assumption that it is difficult to 
accurately estimate message delays between neighbouring 
nodes. This assumption is due to the queuing, randomness, 
and contention that typically occur in the media access 
control layer of many networks on desktop-class computers. 
However, with the advent of specially-designed operating 
systems such as TinyOS (Hill, 2000) and integrated sensor 
nodes like the Mica motes, event callbacks that are invoked 
at the actual time of message transmission are possible. 

The Reference Broadcast System (RBS), perhaps the 
best known timesync algorithm in the sensor network 
regime, uses a transmitter node to synchronise the clocks of 
two receiver nodes to each other. The RBS approach  
time-stamps messages only on the receiver side, which 
eliminates the delays on the sender side, most notably in the 
medium access control layer. The accuracy of the RBS 
time-stamping reported by the authors is approximately 
11 µs on the Mica platform. Least square linear regression is 
used to account for the clock drifts which results in 7.4 µs 
average error between two motes after a 60 second interval. 
The RBS solution for the multi-hop scenario uses concepts 
similar to one of our proposed canonical services. However, 
because of the extra coordination overhead of reference 
broadcasters, the implementation is considerably more 
complicated and less energy efficient than our proposed 
solution in Section 5.2. 

The Timing-Sync Protocol for Sensor Networks (TPSN) 
eliminates sources of time-stamping errors by making use of 
the implicit acknowledgments to transmit information back 
to the sender. This protocol gains additional accuracy over 
RBS due to time-stamping of the radio message twice  
and averaging these time-stamps. Since TPSN relies on a 
two-way information exchange, messages cannot be 
broadcasted, which results in higher communication load. 
The authors of TPSN algorithm implemented both TPSN 
and RBS on the Mica platform using a 4 MHz clock for 
time-stamping, and compared the precision of the two 
algorithms. The resulting average errors for a single hop 
case for two nodes are 16.9 µs and 29.1 µs for the TPSN and 
RBS algorithms, respectively. 

The Flooding Time Synchronisation Protocol (FTSP) 
improves on the ideas in RBS and TPSN. It is a proactive 
protocol in which every node periodically broadcasts 
timesync messages. The local clock of a single dynamically 
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elected node provides the global time in the network. A time 
synchronisation hierarchy rooted at this node is created in 
which nodes are synchronised by receiving global time 
estimates from nodes closer to the root. The applied  
flood-based communication protocol in FTSP provides a 
very robust network, and still incurs only small network 
traffic. The algorithm uses a fine-grained clock, MAC-layer 
time-stamping with several jitter reducing techniques and 
clock drift estimation to achieve high precision. On the 
Mica2 platform the reported average error of the algorithm 
is 1.48 µs for the single hop case, and 0.5 µs per hop in a  
6-hop network for the multi-hop case. However, the initial 
convergence time of FTSP on a 60-node 6-hop network is 
10 minutes. 

The FTSP time-stamping reduces non-determinism to 
such a degree that RBS’s receiver-receiver and TPSN’s  
two-way sender-receiver synchronisation become 
unnecessary, and one-way sender-receiver synchronisation 
suffices. FTSP accomplishes this by identifying, estimating, 
and compensating for almost all sources of uncertainties in 
the radio message delivery. We fully leverage and extend 
FTSP’s results to build our time-stamping primitive 
presented in detail in Section 5. 

Hardware accelerators represent the most promising 
approach to reducing jitter uncertainty to the level of the 
system clock granularity. Hill and Culler (2002) observed 
that unlike wide-area time synchronisation protocols such as 
NTP, in sensor networks we may be able to determine all 
sources of communication delay. By exposing all sources of 
delay to the application, they were able to synchronise a pair 
of nodes to within 2 µs of each other using sender-receiver 
time-stamping. The sources of jitter included several 
factors: raw RF transmission jitter of ±1 µs on the 
transmission propagation due to the internals of the radio, 
hardware capture of the arriving pulse to within an accuracy 
of ±0.25 µs, and synchronisation code path delay of an 
additional ±0.625 µs. This implementation was only 
possible because of the rich interface between the radio 
hardware and system software. 

Dutta (2004) advocates the use of reactive timesync 
algorithms for random event detection, arguing that reduced 
power consumption and low latency due to the lower 
messaging frequency and no need for calibration, 
respectively, map well to the needs of event detection.  
Xu et al. (2004) used an approach similar to ours for  
time-stamping data in a WSN for structural monitoring. 
Both of these works focused on specific applications and 
neither generalised their approach to be broadly applicable. 

3 Canonical services 

Many sensor network applications require time 
synchronisation but the model of synchronisation that is 
needed varies greatly. In practice, many application 
developers resort to the virtual global time service without 
considering other alternatives. Virtual global time is chosen 
because it is conceptually simple, but since it is proactive 
and message-intensive, virtual global time may use system 

resources unnecessarily. We argue that abstracting common 
timesync usage patterns from a number of existing 
applications and standardising the interfaces of these 
abstractions will help developers better identify the 
synchronisation needs of sensor network applications and 
help them choose the most efficient model for their needs. 

This section presents a set of canonical time 
synchronisation services derived from several well-known 
and common sensor network applications. Our focus is on 
the use of the services in actual applications, so we also 
propose a set of application programming interfaces (APIs) 
that could be used by these or other similar applications to 
access timesync services. However, this list is neither 
complete nor predictive; we did not abstract every single 
use of timesync found in the literature nor did we attempt to 
identify future models of synchronisation. Nevertheless, this 
list of timesync services, each of which can be implemented 
using the proposed ETA primitive, suggests that other 
protocols, not on the list, could be implemented using ETA 
as well. 

Table 1 summarises the canonical services, APIs and 
typical applications. Interestingly, we tried hard to find an 
application that truly required global time synchronisation. 
This indicates a possible mismatch between the areas which 
have garnered much of the community’s attention and the 
actual needs of common WSN applications. 

Table 1 Canonical time synchronisation services, their typical 
applications, and proposed API calls and events that 
can be used in a general implementation. Events are 
callbacks from a service layer to a higher layer and 
are of the form OnXXX 

Canonical service Typical applications APIs 

Intrusion detection SendToSink 
Countersniper system SendToAll 

Event time-stamping

Source localisation OnReceive 
Habitat monitoring SetAccuracy 
Structural monitoring MarkStart 
Environment 
monitoring 

MarkStop 

Volcano event 
monitoring 

 

Target classification  

Data series time-
stamping 

Beamforming  
GetGlobalTime 
LocalToGlobal 

Virtual global time Debugging traces 

GlobalToLocal 
Scheduled data 
collection 

Schedule Coordinated action 

Communications 
scheduling 

OnSchedule 

The remainder of this section delves into the canonical 
services and their underlying abstractions, APIs, and 
motivating applications in greater detail. For the remainder 
of this paper, we restrict the discussion to only those 
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applications which require temporal order, since logical and 
delivery orders are trivially implemented with messaging 
and causal ordering requires a temporal ordering capability. 

3.1 Event time-stamping 

A single, isolated event is observed and time-stamped by 
one or more nodes at possibly different times. The 
observation from each node is to be collected at one or more 
sink nodes, either individually or in aggregate. The sink 
node must determine the time-stamp of each event in the 
sink’s local time, regardless of whether the sink is 
coordinated with an external source of time like GPS.  
This service extends to multiple events through repeated 
invocation. 

An event time-stamping API that consists of a Packet 
data structure augmented with an eventTime field, along 
with calls to convergecast a packet (i.e., send a packet 
toward the sink node) 

command bool SendToSink(Packet packet) 

flood a packet (network-wide) to all other nodes 

command bool SendToAll(Packet packet) 

and signal an event when new packet is available at a node 
(which is signalled at every intermediate hop) 

event void OnReceive(Packet *packet) 

appears sufficient to meet the timesync need of these 
applications. 

3.2 Data series time-stamping 

One or more observer nodes are periodically sampling some 
phenomena. The data series from each node are to be 
collected at a sink node for correlated analysis. Data series 
time-stamping requires time-stamps on each sample that are 
both accurate with regard to a series (intra-series accuracy) 
as well as accurate across series (inter-series accuracy). 
Unlike single event time-stamping, which is a discrete event 
and can benefit from discrete corrections such as a single 
RBS exchange, data series time-stamping is a continuous 
effort that requires continuous maintenance. 

The precision of the data series time-stamps varies 
across applications. The phenomena in habitat monitoring 
are at a slow enough time scale that delivery order at a base 
station is a reasonable form of time-stamping. In contrast, 
the phenomena in structural health monitoring require  
in-network stamping to within a fraction of a packet 
transmission time. At the extreme are the applications in 
which the precise phase difference of a signal arriving at 
multiple nodes is important. For example, acoustic source 
localisation and beamforming applications require that a 
signal phase be measured to within a fraction of a cycle, 
which for an acoustic signal in the kHz range might be just a 
few tens of microseconds. In many signal processing 
algorithms; samples cannot be dropped to compensate for 
clock errors. The challenge is to compare observations when 

the sampling frequencies of the sources are not identical, the 
observations are collected over a (potentially long) period of 
time, and samples cannot be dropped or added (i.e., time 
must not have any sudden jumps). 

A data series time-stamping API that includes calls to 
set the required inter-series accuracy 

command bool SetAccuracy(int micros) 

indicates the beginning of a data series (which initiates any 
under-the-hood work needed to meet the specified accuracy) 

command bool MarkStart() 

and indicates the end of a data series (which ends any 
under-the-hood work started to meet the specified accuracy) 

command bool MarkStop() 

could meet the timesync need of these applications provided 
that the underlying implementation could meet the 
constraints. Each timesync implementation might have its 
own method for satisfying the accuracy requirements of the 
application and no implementation might be able to satisfy 
all constraints. 

3.3 Virtual global time 

Virtual global time is perhaps conceptually the simplest of 
the time synchronisation services to understand but is often 
the one which requires the most overhead to achieve. The 
basic idea is simple: a single, virtual, and globally shared 
timebase is accessible at each node in the network. An 
important question is where the timebase originates. Options 
include an external source like GPS, a distinguished root 
node, or some kind of network statistic as the network 
mean. 

A virtual global time API that includes calls to read the 
current global time 
command bool GetGlobalTime(int *time) 

and to convert between the local times and their 
corresponding global times 
command bool LocalToGlobal(int *time)

command bool GlobalToLocal(int *time)
 

appears sufficient to meet the timesync need of these 
applications. 

3.4 Coordinated action 

Coordinated action is similar to event time-stamping, except 
that the event is in the future. Applications that require 
coordinated action include scheduled data collection and 
structural health monitoring. In the former, the action is a 
discrete data collection; depending on the different required 
fidelities, the synchronisation needed for coordinated action 
can be used for the events themselves. In the latter, the 
action is a data time series; although the coordination can 
satisfy the inter-node accuracy, the data series service must 
still be responsible for intra-node accuracy. 
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The challenge in coordinated action is that, unlike 
simple time-stamping, it cannot benefit from post-facto 
synchronisation such as an RBS exchange. However, unlike 
virtual global time, the nodes do not need a continuous 
synchronised time value: they merely need to agree on a 
single point in time. While an implementation of this service 
can depend on virtual global time, other implementation 
options exist. 

We propose a coordinated action API that includes calls 
to schedule an action, in a node’s local time, with optional 
quality of service parameters and number of repetitions 
command bool Schedule(int *time) 

command bool Schedule(int *time, int. 
accuracy) 

command bool Schedule(int *time, int 
accuracy, int. repeat) 

and signal an event when it is time to act, for the count-th 
time, on some previously received coordinated action 
request 
event void OnSchedule(int count). 

4 Sources of time synchronisation error 

This section establishes the terminology and identifies the 
various sources of error that contribute to time 
synchronisation uncertainty. We analyse two fundamentally 
different types of errors: 

• time-stamping jitters encountered when transmitting 
radio messages between nodes 

• time errors caused by the manufacturing and operating 
differences of physical clocks. 

We also provide guidelines on how to design and implement 
high precision one-way sender-receiver time-stamping 
service for broadcasted messages. 

4.1 Time-stamping jitter 

The sources of errors in message time-stamping need  
to be carefully analysed and compensated for, because  
non-deterministic delays in radio message delivery  
have magnitudes larger than the required precision of  
time synchronisation. We use the following decomposition 
of these errors, first introduced by Kopetz and  
Ochsenreiter (1987) and later extended by Kopetz and 
Schwabl (1989), Horauer et al. (2002) and Ganeriwal  
et al. (2003). The presented list is a generalisation of a 
similar list presented by Maroti et al. (2004). 
• Send time. The time used to assemble the message and 

issue the send request to the MAC layer on the 
transmitter side. This depends on the system call 
overhead and processor load. 

 
 
 

• Access time. The delay incurred waiting for  
access to the transmit channel up to the point when 
transmission begins. This depends on the channel 
contention. 

• Transmission time. The time required for the sender to 
transmit the message. This depends on the length of the 
message and the speed of transmission. 

• Propagation time. The time required for the message  
to propagate from the sender to the receiver once it has 
left the sender. This depends only on the distance 
between the two nodes. 

• Reception time. The time required for the receiver to 
receive the message. The transmission and reception 
times have similar characteristics and overlap, if the 
propagation time is negligible. 

• Receive time. Time to process the incoming message 
and to notify the receiver application. Its characteristics 
are similar to that of the send time. 

We further analyse the sources of uncertainties in the 
overlapping transmission and reception times by observing 
an idealised point of radio message, such as the end of a 
particular byte. We follow the transmission of this idealised 
point through the software, hardware and physical layers of 
the wireless channel from the sender to the receiver. The 
following delays in the propagation of the idealised point 
seem to be the most important. 

• Interrupt handling time. The delay between the radio 
chip raising, and the microcontroller responding, to an 
interrupt by recording a time-stamp. 

• Encoding time. The time required for the radio chip to 
encode and transform a part of the message to 
electromagnetic waves. This starts when the radio chip 
initiates the transfer of the idealised point. 

• Decoding time. The time required for the radio  
chip on the receiver side to transform and decode  
the message from electromagnetic waves to  
binary data. This ends when the radio chip raises an 
interrupt indicating the reception of the idealised point. 

Some radio chips cannot capture the byte alignment of the 
transmitted message stream on the receiver side and the 
radio stack has to determine the bit offset of the message 
from the alignment of a known synchronisation byte. Since 
the transmission time of a byte is a few hundred 
microseconds at 38.4 kbps, the delay caused by the incorrect 
byte alignment must be compensated for. 

• Byte alignment error. The delay incurred because of the 
different byte or data segment alignment of the sender 
and receiver. This is deterministic and can be computed 
at the receiver side from the bit offset and the speed of 
the radio. 
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The list provided above characterises phenomena relevant to 
the time-stamping of messages transmitted over the  
wireless channel. We direct the reader to a paper by Maróti 
et al. (2004) for a more comprehensive analysis of these 
sources on the Mica2 platform. Note that some radio 
technologies are not impacted by all these sources of error. 

4.2 Physical clocks 

Computer systems typically measure time in discrete steps 
by counting the oscillations of a physical clock. Such clocks 
are driven by quartz crystals, ceramic resonators, or resistor-
capacitor oscillator circuits, depending on the accuracy, 
stability, power, startup time, and cost requirements  
of the applications. More advanced solutions are  
available as ultra-stable oscillators constructed from 
temperature-compensated sapphire resonators. However, for 
the majority of applications, common quartz crystals 
provide a reasonably accurate and cost-effective solution. 
We assume that a quartz crystal is the basis of the physical 
clock for the remainder of this section and use the terms 
crystal and physical clock interchangeably. 

A quartz crystal oscillator is an analog component which 
outputs a continuous-time sinusoidal signal converted to a 
digital signal by microcontroller. The period of the physical 
clock sets the length of the discrete time quantum, or 
granularity, of the timebase. All synchronisation protocols 
encounter errors caused by the insufficient precision of the 
time representation when an analog-digital boundary is 
crossed (like event detection or time-stamping). The 
exception to this is the time-triggered technology that can 
phase synchronise the clocks across the distributed system: 
• Time representation error: the delay between an event 

and the nearest (or next) representable time value 

Under ideal circumstances, physical clocks oscillate at a 
constant frequency. In the real world, manufacturing 
variations and exposure to out-of-tolerance conditions  
(e.g., mechanical shock) result in permanent frequency 
errors of crystals, and variations in temperature and age 
result in short-term errors of the crystals. 
• Frequency skew. Under specified conditions at a 

nominal ambient temperature, the difference between 
the crystal frequency and the nominal frequency. 
Usually expressed as ∆f/f with typical values around 
±50 ppm. 

• Temperature characteristics. Taking the frequency  
at a nominal ambient temperature as the reference 
(usually +25°C), the change in frequency with respect 
to a change in the ambient temperature. Different 
crystal types have different temperature characteristics: 

• for tuning-fork crystals, ∆f/f depends 
quadratically on the difference between the 
ambient and the nominal temperature 

 
 

• for AT-cut crystals, the relationship between ∆f/f 
and the temperature difference is described by a 
3rd order polynomial equation 

• Ageing. Amount of frequency drift when operated 
under the specified conditions for a specified term.  
A typical value for ageing might be –5 ppm in the first 
year. 

4.3 Minimising the time-stamping jitter 

The uncertainties of the send, receive, access and byte 
alignment times are best eliminated by time-stamping the 
message in the MAC-layer, as is done in several  
time synchronisation protocols. The propagation time 
cannot be calculated or compensated for within the 
transmission of a single message. However, in static 
networks it has no jitter and over short distances (less than 
300 meters) its duration is negligible (less than one 
microsecond). We argue that the message needs to be  
time-stamped at an idealised point, practically when an 
interrupt is raised by the radio. This eliminates the effect of 
the overlapping transmission and reception times.  
The jitter in the interrupt handling time is best eliminated by 
utilising a capture register on the microcontroller. If the 
time-stamp is taken in software, it is important to  
minimise the length of all atomic sections in the  
application to minimise the amount of time that interrupts 
are disabled. The encoding time lasts several hundreds of 
microseconds but usually has very low jitter. On the  
other hand, the radio technology, signal strength 
fluctuations and bit synchronisation errors will introduce 
jitter in the decoding time. The following novel technique 
can be used to reduce the jitter of the encoding,  
decoding and interrupt handling times. We record multiple 
time-stamps both at the sender and receiver sides as the 
message is being transmitted, then using statistical analysis 
we arrive at the final time-stamps (one at the sender and one 
at the receive side) that has lower jitter than the individual 
ones. Details of the statistical analysis are presented by 
Maróti et al. (2004). 

The latest generation of radios make the processor-radio 
interface richer without burdening the processor with the 
overhead of directly coordinating the transmission. Such 
improvements also enable fine-grained timing information 
to be communicated from the radio to the processor while 
using an abstract and high-level interface. For example, the 
Chipcon CC2420 radio, which supports the IEEE 802.15.4 
standard, allows random access into the transmit FIFO 
during transmission (Chipcon, 2003). Such access to the 
transmit queue, when coupled with the Start of Frame 
Delimiter (SFD) output signal – a deterministic hardware 
interrupt on the CC2420 – enables fine-grained message 
time-stamping with virtually no jitter uncertainty on the 
transmit end and ±0.125 µs of uncertainty on the receive 
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 end. By connecting the SFD signal to a timer capture pin on 
the processor, accurate time-stamping on the order of the 
time representation error is possible. 

The presented techniques reduce only the jitter of these 
times, but do not estimate their absolute value. The sum of 
these delays is the difference between the sender and 
receiver side time-stamps. This sum can be measured with a 
one-time calibration procedure utilising a many-to-many 
message handshake similar to the RBS algorithm. We point 
out that using software tools only, it is impossible to 
measure the absolute value of the encoding and decoding 
times separately, only their sum. 

We direct the reader to the paper by Maróti et al. (2004) 
for a more comprehensive analysis of these techniques on 
the Mica2 platform in which 1.4 microsecond  
time-stamping precision was reported. Our key observations 
is that with deterministic MAC-layer time-stamping, we can 
eliminate the runtime calibration phase that is required in 
the work of Romer (2004) and Elson (2002), the need for a 
‘third party’ node as suggested by Elson (2002) and the 
Single-Pulse Synchronisation presented by Elson (2003) for 
many of the existing applications of sensor networks. 

4.4 The choice of local time 

The first key design choice in any time synchronisation 
protocol is the source of times that we want to synchronise. 
We argue that each node must have a free running local 
clock whose offset and skew is only measured and 
compensated for, but never altered. This local clock gives a 
natural time line where events are recorded, actions are 
scheduled and calculations are performed. 

The time representation error of events can never be 
eliminated, but it can be reduced by using a higher 
frequency crystal. For example, the Mica2 mote includes a 
32.768 kHz crystal which provides 30.52 µs granularity 
which is sufficient for many applications. If a finer 
granularity clock is needed, the Mica2 also includes a 
7.3728 MHz crystal which provides 0.1356 µs granularity. 

The actual frequency of a particular crystal instance can 
take any value within the range specified by the tolerance 
precision. If a particular crystal’s frequency is measured at 
multiple temperatures, we can create a calibration table that 
provides a frequency skew factor for every ambient 
temperature. Typically, this kind of calibration is performed 
at manufacture time for instrument-grade electronics like 
oscilloscopes and counters. The calibration must be repeated 
periodically because ageing and shock can cause frequency 
variations. For WSNs that contain hundreds or thousands of 
nodes, repeated manual calibration is simply not an option. 
Instead, it might be possible to perform distributed 
parameter calibration, using the fact that sensor nodes have 
multiple crystals with different temperature characteristic 
curves. For example, on the Mica2 motes, the 32 kHz clock 
is based on a tuning fork crystal while the 7 MHz clock is 
an AT-cut crystal. 

 
 
 

5 Implementation of canonical services 

We argue that both the development and use of timesync 
services will be greatly enhanced by shielding developers 
from the myriad sources of time-stamping errors presented 
in Section 4 by encapsulating these errors in a timesync 
primitive. Our reasons are as follow. 

• The implementation of a timesync primitive is best 
done along with the analysis of the sources of error  
by the hardware domain experts. Consequently, the 
primitive can provide fine-tuned performance by 
reducing or eliminating nearly all sources of timesync 
errors. 

• The timesync primitive is well suited to the component 
based architecture of distributed applications and can 
simplify the implementation of timesync services. 

• The timesync primitive improves the portability of 
timesync services to a different hardware platform by 
isolating code changes to the timesync primitive. 

• Finally, the timesync primitive can be implemented  
as a service provided by the operating system, making 
it easier to access hardware interfaces directly and en 
able higher precision time synchronisation protocols  
to be implemented (Ganeriwal et al., 2003; Maróti  
et al., 2004) than would be possible otherwise. 

In the remaining part of this section, we introduce our  
time-stamping primitive and show how it can be used  
to implement two of the canonical services described  
in Section 3. We demonstrate the significant decrease in 
complexity of the implementation of these services when 
compared to the existing protocols found in the literature. 

5.1 The elapsed time on arrival time-stamping 
primitive 

Conceptually, the elapsed time on arrival (ETA) algorithm 
is useful in the case when a sensor node detects a certain 
phenomenon of interest, or an event, and a neighbour of the 
sensor node needs to know the time of this event. ETA 
allows neighbouring nodes to establish a common time base 
by sending a single radio message transmission. In our 
approach, the times of all events of interest are recorded in 
the local time of a node and inter-node time conversions 
occur whenever messages are transmitted from one node to 
another. At transmission time, the elapsed time since the 
event occurrence is computed and included as a separate 
field in the message. On receipt, a node computes the event 
time by subtracting the elapsed time from the receiving 
node’s local time. 

The implementation details for reducing timesync 
uncertainty for the Mica2 platform were discussed in 
Section 4.3 and can be also found in the work by Maróti  
et al. (2004). The pseudo code of the ETA algorithm is 
shown in Figure 1. 
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Figure 1 The elapsed time on arrival (ETA) algorithm 

 

Each node accesses its local clock or timer through the 
GetLocalTime call. On an event occurrence, the local 
time is recorded in the eventTime field and the event 
message is enqueued for the transmission. When the event 
message is scheduled and the idealised point of the message 
is being transmitted (ostensibly after some delay in the 
media access control layer), both the sender and the 
receivers record their current local time into the 
transmissionTime field. The sender also updates the 
eventTime field to contain the elapsed time since the 
event occurrence. Note that the transmissionTime is 
not transmitted over the wireless channel to the neighbours. 
After the whole message has been received, the eventTime 
is reconstructed on the receiver side by subtracting the 
elapsed time from the receptionTime. The key enabler 
of ETA is the ability to update the content of the radio 
message (to update the eventTime field) while the 
message is being transmitted. 

The proposed time-stamping protocol eliminates or 
reduces all sources of time-stamping error except for 
propagation time and the effects of the clock skew between 
the sender and receiver while a message is waiting in the 
queue. Neither of these errors can be estimated with a single 
radio message and hence this estimation is left for higher 
layers to implement. The overhead of the algorithm is a 
single field in the transmitted message. After message 
transmission is complete, the sender and all receivers know 
the time of the transmission, as well as the time of the event 
in each receiver’s local time base. 

5.2 Event time-stamping service 

The Routing Integrated Time Synchronisation (RITS), a 
reactive time synchronisation protocol, can be used to 
obtain event detections at multiple observers in terms of 
local time of the sink to within microseconds. RITS is an 
extension of time-stamping primitive ETA over multiple 
hops. It is achieved by integrating ETA into the multi-hop 
routing engine DFRF presented by Maroti (2004). 

After detecting an event, the observer stores the relevant 
data in a local data structure along with the local time of the 

event occurrence and uses one of the methods of RITS to 
send the data to the sink. RITS, being a routing engine, 
sends the packet to the sink along a multi-hop path while 
maintaining the event time using ETA. At each hop it 
converts the event time from the local time of the sender to 
the local time of the receiver. 

The details of our implementation are shown in  
Figure 2. Upon receiving a request to send a data  
packet, RITS creates a TimeStampedRITSMessage  
and off-loads all the local time conversion details  
to the ETA algorithm. Upon receiving a 
TimeStampedRITSMessage, RITS creates a new 
packet and associates with it, message. eventTime 
which is the event time converted by ETA to the local time 
of the receiver. RITS then signals the reception of packet to 
the application level and possibly enqueues the packet for 
the further transmission. 

Figure 2 Pseudo code of the RITS implementation 

 

5.3 Virtual global time service 

Rapid Time Synchronisation (RATS), a proactive time 
synchronisation protocol, achieves network-wide timesync 
in medium size networks with microsecond precision and 
rapid convergence. The basic idea is the same as in RITS, 
except that the direction of messages is reversed: instead of 
convergecast from multiple nodes to the sink, we use a 
broadcast from a single node, the root, to all other nodes in 
the network. 

Time synchronisation is initiated by the root by 
broadcasting a message containing two fields, 
rootEventTime and eventTime, which are both 
initialised to the same value in the root’s local time (the 
current time). Network wide broadcast is used to transmit 
the root’s message to all nodes in the network. The 
rootEventTime field is not modified during the 
broadcast, while ETA converts the eventTime field to the 
local time of the receiver of the message. Thus when a node 
receives the message, it obtains two times corresponding to 
the same time instant: rootEventTime, in the local time 
of the root, and eventTime, in the local time of the node. 
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We call the pair (rootEventTime,eventTime) a 
synchronisation point and use several of them to estimate 
the offset and skew of the local clock of receiver to the 
root’s clock. Consequently, the local time of the root 
becomes the global time in the network. 

The most widely used method to estimate the clock drift 
of a node to the clock of the root is linear regression  
(Maroti et al., 2004; Elson, 2002): a fixed number of 
synchronisation points are locally stored in a table at each 
node, a linear regression line is fit to these points and the 
slope and intercept of the line is used to estimate the root’s 
time in the future. Since the drift of the clock may change 
over time (see Section 4), the root needs to rebroadcast 
synchronisation messages periodically. We use a sequence 
number field in the RATS message to distinguish new 
synchronisation messages from old ones. We used RITS to 
implement RATS (see Figure 3) but it is straightforward to 
implement RATS directly over ETA. 

Figure 3 Pseudo code of the RATS implementation 

 

6 Evaluation 

We implemented the ETA, RITS and RATS protocols in 
TinyOS (Hill, 2000) on the UC Berkeley Mica2 platform. 
Even though the RITS and RATS protocols are simple 
extensions of ETA, our experimental evaluation shows that 
their performance is comparable to, if not better than, the 
leading timesync algorithms found in the WSN literature. 

6.1 Evaluation of RITS: routing integrated time 
synchronisation 

We tested the performance of RITS in an experimental 
setup using 45 Mica2 motes arranged in a grid. Each node 
was able to communicate only with its neighbours as shown 
in Figure 4, forming a 10-hop network. This constraint was 
enforced in software. The test scenario involved  
multiple observers detecting the same event and  
reporting the event detection times to the sink. We 
simulated the event detection by a radio message that was 
transmitted by a single node and received by all the nodes 
that were, at most, two hops away from the sender. Figure 4 
shows the sink, the nodes, the radio links and the detection 
radius of an event. 
 
 

Figure 4 The layout of the RITS experiment: a node 
communicates with at most eight nodes and an event is 
detected at most at 12 nodes 

 

Each node recorded the time of arrival of the message as an 
event detection time (message.receptionTime in 
Figure 1), created a detection message consisting of the id 
of the node (message.nodeID) and the detection time 
(message.eventTime) and sent this message to the 
sink. Consequently, the sink received detection messages 
from up to 12 different nodes. Each such message contained 
the time of the simulated event at a particular node 
converted by RITS to the local time of the sink. The times 
reported by two different nodes should be the same if we 
neglect the propagation time of a radio message. However, 
the time-stamping error as well as the clock skew error 
cause a small variance of the received times. For each group 
n reported times we calculate the maximum and the average 

of the 
2
n 
 
 

 pairwise errors in the group. We call these 

values and average and maximum synchronisation error, 
respectively. 

We broadcasted the event simulation message five  
times with 100 ms delays in a single simulation round.  
The sender of the event simulation message was chosen 
randomly both within and across rounds. We initiated 
consequent simulation rounds with a 30-second period, let 
the experiment run for one and one-half hours and  
collected data for 900 simulated events. We plot the 
histogram of maximum synchronisation error in Figure 5. 
The maximum and average errors of the maximum 
synchronisation error over all rounds were 80.19 µs and 
7.86 µs respectively. 

Figure 5 Shows the histogram of the maximum pairwise error in 
the RITS experiment 
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The performance of RITS is principally affected by two 
factors. First, variations in clock crystal frequencies – we 
have observed delays of up to 17 seconds between the event 
happening and the event notification message arriving to the 
sink in a particular round. The frequency error of a typical 
oscillator is in the range of 10 –100 ppm, therefore, a 
7 MHz MICA2 oscillator can introduce significant errors 
over these long delays. Second, variations in the jitter of 
time-stamping – this affects RITS the same way as any 
other timesync protocol that uses radio message time-
stamping to establish a common time base. 

The timesync accuracy of RITS as shown by our 
experiment is slightly worse than the accuracy of published 
proactive algorithms by Ganeriwal et al. (2003), Maroti et 
al. (2004) and Elson (2002). However, we argue that this 
accuracy is sufficient for most applications and that the 
energy-quality tradeoffs of RITS vs. proactive protocols is 
acceptable, and even desirable, in many cases. 

The benefits of RITS over proactive timesync  
protocols are as follows. First, the drifts of the local clocks 
of the nodes do not need to be calculated and maintained in 
RITS whereas proactive algorithms require periodic 
resynchronisation. Second, RITS can be powered down 
completely and woken up by the event itself (as in Lédeczi 
et al., 2005), which enables more sophisticated power 
management techniques than proactive protocols which 
require the nodes to be continuously active, even between 
synchronisation events, since at least local clocks need to be 
running. Third, RITS introduces minimal communication 
overhead; there is no need for time synchronisation related 
messages as in proactive algorithms and only a single field 
needs to be included in the transmitted message. 

6.2 Evaluation of RATS: rapid time synchronisation 

We evaluated the performance of RATS using the same test 
setup as was used for FTSP (Maróti et al., 2004). We set up 

60 Mica2 motes in a 5 × 12 grid so that each node had  
up to eight neighbours enforced in software. This is  
similar to the RITS test scenario shown in Figure 4. The  
test setup involves 60 synchronising nodes, the  
reference broadcaster that queries the global time estimates 
of the synchronising nodes, and the base station that  
collects the reported global times. The reference  
broadcaster and the base station are used just for  
evaluation purposes; they play no role in the 
synchronisation algorithm. 

The root was programmed to transmit synchronisation 
messages first for 10 seconds with a period of two seconds 
and then for the rest of the experiment with a period of  
30 seconds. The reference broadcaster queried the global 
time from all the nodes with a period of five seconds during 
the first two minutes and with a period of 23 seconds (which 
is a relative prime to 30) the rest of the time. In each 
reference broadcast we obtained up to 60 reported global 
times, one of them being the root’s time. For each reference 
broadcast, we computed the maximum and the average 
absolute errors as the maximum and the average absolute 
difference between the root’s time and the other times for 
each reference broadcast round. 

We ran the experiment for six hours and achieved 
network-wide synchronisation (the point in time when at 
least two synchronisation points had been received by all 
nodes) only four seconds after switching on the root.  
Over all rounds, the maximum and average errors of RATS 
were 26 µs and 2.7 µs, respectively. This is in contrast to the 
10-minute convergence time, 14 µs maximum error and 
2.3 µs average error of FTSP (Maroti et al., 2004). We note 
that the FTSP experiment had only six hops whereas our 
experiment had 11 hops, so we suspect that the maximum 
and average errors of RATS and FTSP might have been 
closer if FTSP were synchronising over 11 hops. Figure 6 
shows the maximum and average errors for each round of 
the experiment. 

Figure 6 The RATS experiment showing the maximum and average errors of the reported global times. The figure on the left shows the 
first 10 minutes and the figure on the right shows the whole experiment. The synchronisation was achieved after 4 seconds and 
the average error was 2.7 µs in the 11 hop network 

 
 
At the beginning of experiment the errors were generally 
larger than later on. This is expected as initially only a few 
datapoints were available in the regression table and the 
clock skew estimate was not as accurate. Moreover, errors 

in individual measurements have a much larger effect  
on the accuracy of the skew estimation, because initially  
the regression table covers only a few seconds. The data 
also illustrate this point: when the protocol switched to the 
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30-second period, the maximum error gradually increased to 
26 µs and then gradually decreased as the skew estimates 
improved. More generally, the tradeoffs between RATS and 
FTSP are as follows. 

Network-wide convergence time of timesync in RATS 
was shown to be four seconds for 11 hops; it took 10 
minutes to achieve network-wide synchronisation of FTSP 
for a 6-hop network as reported by Maróti et al. (2004). 
Depending on the accuracy needs of the application it is 
possible to achieve sub-second convergence using RATS by 
decreasing the initial synchronisation period even further. 

The robustness of RATS is superior to FTSP in two 
regards. First, the synchronisation error of a node in RATS 
does not depend on the current clock drift estimation of the 
nodes on the route from the root but it does for FTSP. 
Second, the synchronisation message from the root arrives 
at each node along multiple routes, giving the node multiple 
local times for each global time. RATS takes the median of 
the received local times as its synchronisation point, which 
is robust to outliers, and allows RATS to tolerate faulty or 
adversarial nodes whereas FTSP cannot. 

Unlike FTSP, RATS cannot maintain network-wide 
synchronisation if the network is partitioned and is 
vulnerable to a root failure. However, since most WSN 
applications depend on a gateway for wide-area network 
access, we have the base station already. Since RATS floods 
the network with radio messages during synchronisation 
times, the available bandwidth of the network is temporarily 
but dramatically reduced. FTSP, in contrast, distributes the 
radio message load evenly and thus it provides constant 
radio bandwidth for applications. 

7 Conclusions 

Advances over the last few years in radio and wireless 
sensor network design enable, and increasingly challenging 
application requirements drive us, to continuously 
reconsider the boundaries between the hardware, operating 
system, middleware and application layers. Single layer 
solutions to several key problems that inherently touch 
multiple layers such as time synchronisation in wireless 
networks are likely to be less efficient than those that can 
carefully address the challenges at each layer. The price one 
must pay for the increased control and efficiency, however, 
is additional complexity between the layers. We argue that 
the solution is to minimise the number of different 
interfaces between the layers but increase their expressive 
power. 

Our first key contribution is the careful analysis of the 
sources of time synchronisation jitter between the operating 
system, radio chip and wireless channel. We present a 
comprehensive list of software techniques and 
recommended hardware solutions to maximise the precision 
of the message time-stamping. Then we propose a time 
synchronisation primitive, called elapsed time on arrival 
(ETA) which is a one-way, sender-receiver time-stamping 
service for broadcasted messages. On the Mica2 platform its 
precision is better than 1.4 µs between the sender and/or any 

of the receivers. It allows the translation of event times, 
expressed in the local clock of the nodes, from the sender to 
its neighbours. Other than the event time, it has absolutely 
no data overhead in the message. The two key enablers of 
ETA are 1) integration with the MAC-layer to minimise the 
jitter, and 2) the ability to embed the time-stamp in the 
message while it is being transmitted. 

As our second contribution, we have identified a small 
set of canonical services together with their application 
programming interfaces that capture the time 
synchronisation requirements of actual wireless sensor 
network applications. We argue that abstracting common 
timesync usage patterns from the existing applications will 
help application developers to identify their time 
synchronisation needs. We propose to build canonical 
services on top of an explicit timesync primitive, such as 
our ETA, and show that their implementation with ETA is 
less complex and has comparable or better precision.  
The Event Time-Stamping canonical service is implemented 
by the Routing Integrated Time Synchronisation (RITS) 
protocol, which is the multi-hop extension of ETA. 
Combined with a convergecast routing policy, it allows the 
root node to correlate the detection time of a single event at 
multiple observers. In a 45-node 10-hop network the maximum 
and average time synchronisation errors were 80 µs and 
8 µs, respectively. The Virtual Global Time canonical service 
was implemented by the Rapid Time Synchronisation 
(RATS) protocol, in which a root node broadcasts its local 
time in the network, using RITS. In a 60-node 10-hop 
network the algorithm achieved network-wide synchronisation 
in four seconds, and the maximum and average time 
synchronisation errors were 26 µs and 2.7 µs, respectively. 
In a similar setup, the Flooding Time Synchronisation 
Protocol (FTSP) achieved network-wide synchronisation in 
10 minutes, while the maximum and average errors were 
14 µs and 2.3 µs, respectively. 
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